Structural-Pattern Databases

نویسندگان

  • Michael Katz
  • Carmel Domshlak
چکیده

Explicit abstraction heuristics, notably pattern-database and merge-and-shrink heuristics, are employed by some state-ofthe-art optimal heuristic-search planners. The major limitation of these abstraction heuristics is that the size of the abstract space has to be bounded by a (large) constant. Targeting this issue, Katz and Domshlak (2008b) introduced structural, and in particular fork-decomposition, abstractions, in which the planning task is abstracted by an instance of a tractable fragment of optimal planning. At first view, however, the lunch was not free. Some of the power of the explicit abstraction heuristics comes from pre-computing the heuristic function offline, and then determine h(s) for each evaluated state s by a very fast lookup in a “database”. In contrast, fork-decomposition offer a poly-time, yet far from being fast, computation. In this contribution, we show that the time-per-node complexity bottleneck of the fork-decomposition heuristics can be successfully overcome. Specifically, we show that an equivalent of the explicit abstractions’ notion of “database” exists for the fork-decomposition abstractions as well, and this despite of their exponential-size abstract spaces. Experimentally, we show that heuristic search with such “databased” fork-decomposition heuristics favorably competes with the state-of-the-art of optimal planning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Protecting Access Pattern in Outsourced Data

Protecting the information access pattern, which means preventing the disclosure of data and structural details of databases, is very important in working with data, especially in the cases of outsourced databases and databases with Internet access. The protection of the information access pattern indicates that mere data confidentiality is not sufficient and the privacy of queries and accesses...

متن کامل

Strengthening Canonical Pattern Databases with Structural Symmetries

Symmetry-based state space pruning techniques have proved to greatly improve heuristic search based classical planners. Similarly, abstraction heuristics in general and pattern databases in particular are key ingredients of such planners. However, only little work has dealt with how the abstraction heuristics behave under symmetries. In this work, we investigate the symmetry properties of the p...

متن کامل

Annotation in three dimensions. PINTS: Patterns in Non-homologous Tertiary Structures

The detection of local structural patterns in proteins (e.g. active sites) can provide insights into protein function in the absence of sequence or fold similarity. Methods to detect such similarities are key during structural annotation, for example with results from Structural Genomics initiatives. PINTS (Patterns in Non-homologous Tertiary Structures, http://pints.embl.de) performs database ...

متن کامل

Search and retrieval of plasma wave forms: Structural pattern recognition approach

Databases for fusion experiments are designed to store several million wave forms. Temporal evolution signals show the same patterns under the same plasma conditions and, therefore, pattern recognition techniques can allow identification of similar plasma behaviors. Further developments in this area must be focused on four aspects: large databases, feature extraction, similarity function, and s...

متن کامل

Searchable Encrypted Relational Databases: Risks and Countermeasures

We point out the risks of protecting relational databases via Searchable Symmetric Encryption (SSE) schemes by proposing an inference attack exploiting the structural properties of relational databases. We show that record-injection attacks mounted on relational databases have worse consequences than their file-injection counterparts on unstructured databases. Moreover, we discuss some techniqu...

متن کامل

Protein structure database search and evolutionary classification

As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009